A) Barisan Aritmatika
1. Pengertian Barisan Aritmatika
Barisan aritmatika adalah suatu barisan dengan selisih antara dua suku yang berurutan selalu tetap.
Misalnya Un menyatakan suku ke-n suatu barisan, maka barisan itu disebut barisan aritmatika jika Un - Un-1 selalu tetap.
Bentuk umum barisan aritmatika seperti berikut :
U1,U2,U3,...... ,Un-1 atau a,a + b,a + 2b,……,a + (n-1) b
Keterangan : U1 = a = suku pertama
Un - Un-1 = beda = b
Un = suku ke-n
n = banyaknya suku / urutan suku
Maka rumus suku ke-n barisan aritmatika adalah Un = a + (n-1) b, dengan n = 1,2,3,……
2. Menentukan Rumus ke-n dari Suatu Barisan
Untuk menentukan rumus ke-n , kita harus menentukan suku pertama (a) dan beda (b).
Contoh :
Tulis rumusnya 2,3,4,...
Penyelesaian :
a = 2
b = 3-2 = 1
Un = a + (n-1) b
Un = 2 + (n-1) 1
Un = 2 + n – 1
Un = n - 1
3. Menentukan Suku ke-n dari Suatu Barisan
Suku ke-n suatu barisan bilangan dilambangkan dengan Un. Sedangkan untuk menentukan suku ke-n dapat dicari dengan rumus yang dapat diketahui melalui aturan
pembentukan barisan bilangan
Contoh :
Tentukan suku ke-20 barisan bilangan 2,5,8,11,....
Penyelesaian :
a = 2
b = 5-2 = 3
Un = a + (n-1) b
= 2 + (20-1) 3
= 2 + 60 – 3
= 59
Dengan melihat nilai b, kita dapat menentukan barisan aritmatika itu naik atau turun, sebagai berikut :
a. Bila b > 0, maka barisan aritmatika itu naik.
b. Bila b < 0, maka barisan aritmatika itu turun.
Barisan bilangan yang memiliki suku tengah apabila banyak sukunya ganjil. Jika Suku
ke-t atau Ut merupakan suku tengah, maka banyaknya suku adalah (2t – 1) dan suku
terakhir adalah suku ke-(2t – 1) atau U(2t – 1).
sehingga diperoleh hubungan:
Ut = 1/2 (U1 + U(2t – 1) )
Karena U(2t – 1) merupakan suku akhir dari deret tersebut dan U1 merupakan suku awal,
maka:
Utengah = 1/2 ( Uawal + Uakhir)
5). Barisan Aritmatika Tingkat Banyak (Pengayaan)
Barisan aritmatika tingkat x adalah sebuah barisan aritmatika yang memiliki selisih
yang sama tiap suku yang berurutannya setelah x tingkatan.
Dengan menggunakan pembuktian Binomium Newton (tidak diuraikan disini), maka
rumus umum suku ke-n untuk barisan aritmatika tingkat banyak adalah:
Un = a + (n – 1)b + 1/2 (n -1)(n -2)c + 1/3 (n -1)(n - 2)(n-3)d + ….
Keterangan :
a = suku ke-1 barisan mula-mula
b = suku ke-1 barisan tingkat satu
c = suku ke-1 barisan tingkat dua
d = suku ke-1 barisan tingkat tiga dan seterusnya
B) Deret Aritmatika
1. Pengertian Deret Aritmatika
Deret Aritmatika adalah jumlah suku – suku barisan aritmatika. Jika a adalah suku pertama deret aritmatika, Un suku ke-n, Sn jumlah Un . Maka:
Sn = 1/2 n (a + Un)
Keterangan:
1. Beda antara dua suku yang berurutan adalah tetap (b = Sn")
2. Barisan aritmatika akan naik jika b > 0
Barisan aritmatika akan turun jika b < un =" Sn" un =" Sn'" ut =" 1/2" sn =" 1/2" ut =" Sn" a =" 1" b =" 3-2" sn =" 1/2" s10 =" 1/2" s10 =" 1/2" s10 =" 55">2. Sifat-Sifat Deret Aritmatika
1) Un – U(n - p) = b . p
2) Sn = 1/2 n (a + Un) = 1/2 n {2a + (n-1) b}
C. Sisipan dan Deret Aritmatika
1. Pengertian Sisipan
Sisipan dalam deret aritmatika adalah menambahkan beberapa buah bilangan di antara dua suku yang berurutan pada suatu deret aritmatika, sehingga terjadi deret aritmatika yang baru.
Contoh
Deret mula-mula = 4 + 13 + 22 + 31 +......
Setelah disisipi = 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 +…...
2. Beda Deret Baru
Besar beda deret setelah diberi sisipan dinyatakan dengan b1 dan dapat ditentukan dengan rumus berikut :
b1 = b
k+1
b1 = beda deret baru
b = beda deret mula-mula
k = banyak bilangan yang disisipkan
Contoh :
Di antara dua suku yang berurutan pada deret 6 + 15 + 24 + 33 + ... disisipkan 2 buah bilangan, maka :
b = 15 – 6 = 9 dan k = 2
b = 9 = 3
k+1 2+1
THANKS YOOOOO
BalasHapusmakasih y
BalasHapusHard Rock Hotel & Casino Richmond, VA Jobs, Careers
BalasHapusFind out 속초 출장마사지 what works well at Hard 당진 출장샵 Rock Hotel & Casino Richmond, VA from where you can find work-life balance, Casino 시흥 출장안마 Resort Hotel 서산 출장안마 Richmond, VA 안성 출장샵 Jobs, Careers &